Welcome to CSB

The capability of biological systems to respond to environmental changes is realized by a complex dynamic adjustment of the interplay between genes, proteins and metabolites. For a deeper understanding at the systems level, we need to study the structure and dynamics of cellular and organismal functions rather than the characteristics of isolated parts of a cell or an organism.


What our research is aiming for

The main focus of our group is the application and development of computational methods to process and integrate quantitative biological data from modern high-throughput measurements to gain novel insights into plant acclimation responses. Therefore, we want to drive theory and technology forward with a combination of biological science, applied informatics and statistical approaches.


Our research team on CSB

Timo Mühlhaus (Junior Professor)

Timo Mühlhaus

Junior Professor
Alexander Lüdemann ()

Alexander Lüdemann

Scientific Programmer
Sabrina Gödel (PhD Student)

Sabrina Gödel

PhD Student
Nathan Mikhaylenko (PhD Student)

Nathan Mikhaylenko

PhD Student
David Zimmer (PhD Student)

David Zimmer

PhD Student

Patrick Blume


Benedikt Venn


Esther Wieczorek


Robert Labus


Lukas Weil


Kevin Schneider

  • 2017
    David Zimmer (Master Student)
  • 2016
    Sabrina Gödel (Master Student)
    Lukas Weil (Bachelor Student)
  • 2015
    Esther Wieczorek (Bachelor Student)
    Paul Menges (Bachelor Student)


View our latest publications

Plant Physiology
GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis
Tadini, L., Pesaresi, P., Kleine, T., Rossi, F., Guljamow, A., Sommer, F., Mühlhaus T., Schroda M., Masiero, S., Pribil, M., Rothbart, M., Hedtke, B., Grimm, B. and Leister, D.
Biochimica et biophysica acta
ATP-dependent molecular chaperones in plastids - More complex than expected
Trösch, R., Mühlhaus, T., Schroda, M., and Willmund, F.
The Plant Cell
Conditional Depletion of the Chlamydomonas Chloroplast ClpP Protease Activates Nuclear Genes Involved in Autophagy and Plastid Protein Quality Control
Ramundo S, Casero D, Mühlhaus T., Hemme D, Sommer F, Crèvecoeur M, Rahire M, Schroda M, Rusch J, Goodenough U, Pellegrini M, Perez-Perez ME, Crespo JL, Schaad O, Civic N, Rochaix JD
Methods in molecular biology (Clifton, N.J.)
Identification and validation of protein-protein interactions by combining co-immunoprecipitation, antigen competition, and stable isotope labeling
Sommer, F., Mühlhaus, T., Hemme, D., Veyel, D., and Schroda, M
The Plant Cell
Evidence for a role of VIPP1 in the structural organization of the photosynthetic apparatus in Chlamydomonas
Nordhues, A., Schöttler, M.A., Unger, A.-K., Geimer, S., Schönfelder, S., Schmollinger, S., Rütgers, M., Finazzi, G., Soppa, B., Sommer, F., Mühlhaus, T., Roach, T., Krieger-Liszkay, A., Lokstein, H., Crespo, JL. and Schroda, M.
Wie Pflanzen auf Umweltveränderungen reagieren
Hemme, D.*, Weiss, J.*, Mühlhaus, T.*, Sommer, F., and Schroda, M.
International review of cell and molecular biology
New insights into the roles of molecular chaperones in Chlamydomonas and Volvox
Nordhues, A., Miller, S.M., Mühlhaus, T., and Schroda, M.
The Journal of biological chemistry
Assistance for a chaperone: Chlamydomonas HEP2 activates plastidic HSP70B for cochaperone binding
Willmund, F., Hinnenberger, M., Nick, S., Schulz-Raffelt, M., Mühlhaus, T., and Schroda, M.
The Journal of biological chemistry
The NH2-terminal domain of the chloroplast GrpE homolog CGE1 is required for dimerization and cochaperone function in vivo
Willmund, F., Mühlhaus, T.*, Wojciechowska, M., and Schroda, M.

Open Source

Take a look on our public repositories on github. Feel free to contribute!

View Github


Faculty Impressum Datenschutz

Jun. Prof. Dr. Timo Mühlhaus
Computational Systems Biology

University of Kaiserslautern
Paul-Ehrlich-Str. 23 R109
67663 Kaiserslautern, Germany

+ 49 631 205 4657
+ 49 631 205 2999